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Abstract

The objective of this paper is to provide a review of the development and current progress in the Direct Strength Method for cold-formed
steel member design. A brief comparison of the Direct Strength Method with the Effective Width Method is provided. The advantage of methods
that integrate computational stability analysis into the design process, such as the Direct Strength Method, is highlighted. The development of
the Direct Strength Method for beams and columns, including the reliability of the method is provided. Current and ongoing research to extend
the Direct Strength Method is reviewed and complete references provided. The Direct Strength Method was formally adopted in North American
cold-formed steel design specifications in 2004 as an alternative to the traditional Effective Width Method. The appendices of this paper provide
the Direct Strength Method equations for the design of columns and beams as developed by the author and adopted in the North American
Specification.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Cold-formed steel members are typically thin-walled, i.e. lo-
cal plate buckling and cross-section distortion must be treated
as an essential part of member design. These complications also
provide certain opportunities, as local plate buckling, in partic-
ular, has the capacity for beneficial post-buckling reserve that
can be drawn upon for increased strength in design. As a re-
sult, the ultimate efficiency, e.g. in terms of strength-to-weight
ratio, can be quite high for cold-formed steel members. The
challenge for any cold-formed steel design method is to in-
corporate as many of these complicated phenomena, that are
largely ignored in conventional design of ‘compact’ sections,
into as simple and familiar a design method as possible. Further
complicating the creation of simple design methods for cold-
formed steel members is the lack of symmetry in many cross-
sections, the enhanced possibility of limit states related directly
to the use of thin steel sheet such as web crippling, and other
unique characteristics of their manufacture and application.

2. Design methods for thin-walled members

Currently, two basic design methods for cold-formed steel
members are formally available in design specifications in

E-mail address: schafer@jhu.edu.

North America the traditional Effective Width Method, also
known as the unified method or the main specification
method [1], and the Direct Strength Method, also known as
the Appendix 1 method [2]. The Effective Width Method is
available, in some form, nearly world-wide for formal use in
design, while the Direct Strength Method has only been adopted
in North America, and Australia/New Zealand. Other design
approaches include: Reduced Stress, Effective Thickness, the
Q-factor approach and more recently the Erosion of Critical
Bifurcation Load approach championed by Dubina [3,4], all of
which are worthy of mention, but not detailed here further.

2.1. Effective Width Method

The basis for the Effective Width Method is well explained
in textbooks and Specifications; the essential idea is that
local plate buckling leads to reductions in the effectiveness of
the plates that comprise a cross-section, as demonstrated in
Fig. 1(a). More formally, this loss in plate effectiveness can be
understood as an approximate means to account for equilibrium
in an effective plate under a simplified stress distribution as
opposed to the actual (full) plate with the actual nonlinear
longitudinal stress distribution that develops due to buckling, as
illustrated in Fig. 1(a). Each plate in a cross-section is reduced
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(a) An effective C-section determined as a
composition of effective plates, with the effective
width of the flange plate shown along with the
actual flange plate under nonuniform longitudinal
stress.

(b) Semi-analytical finite strip solution of a C-section in bending showing
local, distortional and lateral-torsional buckling as well as the moment to
cause first yield.

Fig. 1. Fundamental steps in the strength determination of a C-section by (a) Effective Width Method and (b) Direct Strength Method.

to its effective width, and this reduction from the gross cross-
section to the effective cross-section, again as illustrated in
Fig. 1(a), is fundamental to the application of the Effective
Width Method. The effective cross-section (i) provides a clear
model for the locations in the cross-section where material is
ineffective in carrying load, (ii) cleanly leads to the notion
of neutral axis shift in the section due to local-buckling and
(iii) provides an obvious means to incorporate local–global
interaction where reduced cross-section properties influence
global buckling (although specifications often simplify this
interaction somewhat).

However, the common two-dimensional nonlinear stress
distribution that is shown to explain the effective width of
a plate is itself an approximation, representing the average
of the longitudinal membrane stress and ignoring variation
in stress through the thickness as well as variation in stress
along the length of the plate. Thus, the true “effective width”
is far more complicated than typically assumed and existing
effective width equations only correlate to average membrane
stress conditions in a plate. Further, the Effective Width Method
(i) ignores inter-element (e.g. between the flange and the
web) equilibrium and compatibility in determining the elastic
buckling behaviour, (ii) incorporation of competing buckling
modes, such as distortional buckling can be awkward, (iii)
cumbersome iterations are required to determine even basic
member strength and (iv) determining the effective section
becomes increasingly more complicated as attempts to optimize
the section are made, e.g. folded-in stiffeners add to the plates
which comprise the section and all plates must be investigated
as being potentially partially effective. The Effective Width
Method is a useful design model, but it is intimately tied
to classical plate stability, and, in general, creates a design
methodology that is different enough from conventional (hot-

rolled) steel design that it may impede use of the material by
some engineers in some situations.

2.2. Direct Strength Method

If the effective width (or section) is the fundamental concept
behind the Effective Width Method, then accurate member
elastic stability, as shown in Fig. 1(b) is the fundamental
idea behind the Direct Strength Method. The Direct Strength
Method is predicated upon the idea that if an engineer
determines all of the elastic instabilities for the gross section,
i.e. local (Mcr`), distortional (Mcrd), and global buckling
(Mcre), and also determines the moment (or load) that causes
the section to yield (My), then the strength can be directly
determined, i.e. Mn = f (Mcr`, Mcrd, Mcre, My). The Direct
Strength Method has been mentioned in textbooks and review
articles [5–8]. The method is essentially an extension of the
use of column curves for global buckling, but with application
to local and distortional buckling instabilities and appropriate
consideration of post-buckling reserve and interaction in these
modes. The development of, and continued research into, the
Direct Strength Method is explored further in this paper.

2.3. Long-term goals

It is important to recognize in any discussion regarding
the Effective Width Method, the Direct Strength Method,
or other semi-empirical design methods that none of these
design methods are theoretically correct. Rather, a complicated
nonlinear problem is simplified in some manner so that
engineers may have a working model to design from without
resorting to testing every individual member. These models
serve us well when backed up by the application of reliability
to incorporate uncertainty in their predictive powers.
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It is this author’s contention that the long-term goal
for thin-walled member design should be a fully nonlinear
computational simulation. To this end, the computational
member elastic buckling stability analysis that is at the heart
of the Direct Strength Method is a useful stepping stone. In
particular, the underlying mechanics for the member stability
solutions, in e.g. the finite strip method [9,10] are necessary
(but not sufficient) for understanding fully nonlinear analysis.
Such a nonlinear analysis will also need to incorporate
geometrical and material imperfections into a consistent
reliability framework so that we may provide engineers with
a realistic prediction of strength and sensitivity that can be used
in design.

More attempts to understand the inputs to thin-walled
member strength such as geometric imperfections and residual
stresses [11] as well as modelling assumptions (elements,
material modelling) related to the underlying mechanics are
needed [12]. Finally, for a full structural simulation the member
analysis will need to be wedded to realistic connection and
system models. While these remain long-term goals this author
contends that we should try to place as much emphasis on
mechanics that we can agree on today (such as member elastic
stability) into current design codes and specifications — as we
drive towards more robust solutions in the future.

3. Direct Strength Method for columns: Development

For columns, the beginning of the Direct Strength Method,
though it was not called this at the time, can most clearly
be traced to research into distortional buckling of rack post
sections at the University of Sydney [13,14]. In particular,
Hancock et al. [15] collected the research and demonstrated that
for a large variety of cross-sections the measured compressive
strength in a distortional failure correlated well with the
slenderness in the elastic distortional mode. As is often the
case with attempts to determine an origin, we can go back
even further as Hancock attributes his methodology to Trahair’s
work on the strength prediction of columns undergoing
flexural–torsional buckling. In this regard it becomes clear that
the Direct Strength Method is not a new idea, but rather the
extension of an old one to new instability limit states.

Development of the Direct Strength Method beyond
distortional buckling was completed using a much wider set of
cold-formed steel cross-sections and tests that included failures
in local, distortional, and global flexural or flexural–torsional
modes [16,17]. For the 187 columns gathered in [16,17]
hand solutions and numerical (finite strip) solutions for the
elastic buckling were calculated. For local buckling the strength
curve was selected to be similar to that previously found for
beams (see the following section for further discussion). For
distortional buckling, one of the curves suggested by Hancock
et al. in [15] was employed. For global buckling the existing
specification expressions [1] were employed.

The resulting Direct Strength Method provisions for
columns are summarized in the Appendix A of this paper
and comparison with the test data is provided graphically in
Fig. 2. Note, that for the local failures the normalization of

Fig. 2. Comparison of the Direct Strength Method predictor curves with test
data for columns (equation numbers refer to those used in the North American
Specification [2]).

Ptest is to Pne, the maximum strength due to global buckling
(thus reflecting local–global interaction), while for distortional
buckling the normalization of Ptest is to Py , the squash load of
the column. Fig. 2 indicates that the Direct Strength Method
is a reasonable predictor of strength over a wide range of
slenderness. Reliability of the method is further discussed in
Section 5.

Interaction of the buckling modes was systematically studied
for local–global, distortional–global, and local–distortional
buckling of the columns. Based on overall test-to-predicted
ratios, and when available the failure modes noted by the
researchers in their testing, it was determined that local–global
interaction should be included, but not distortional–global, or
local–distortional interaction. For instance, if local–distortional
interaction is included, by replacing the maximum load in
the Direct Strength Method provisions with the distortional
strength, Pnd , instead of the global strength, Pne, (see
Appendices A and B for the expressions) this results in
overly conservative predictions: 169 of the 187 tests would be
identified to fail in local–distortional interaction and the average
test-to-predicted ratio would be 1.35 [16,17]. Neither the failure
mode nor strength prediction is consistent with the observations
from the tests when local–distortional interaction is included for
all columns. As a result, it was recommended to only include
local–global interaction in the Direct Strength Method.

Recent work [18,19] has questioned whether local–
distortional interaction should be included in some specific
cases, particularly when the elastic critical local and distortional
buckling loads are at similar levels. Work is ongoing to
determine the most appropriate way to identify and predict the
strength for the small number of columns that do have potential
local–distortional interaction.

4. Direct Strength Method for beams: Development

The first mention of the Direct Strength Method occurs
in [20] and was closely coupled to the development of the
method for beams, in particular, application of the large
database of sections that was collected by the author to explore
two problems: distortional buckling in C- and Z-section beams,
and local and distortional buckling in deck sections with
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Fig. 3. Comparison of the Direct Strength Method predictor curves with test
data for beams (equation numbers refer to those use in the North American
Specification [2]).

multiple longitudinal intermediate stiffeners in the compression
flange. At the same time Hancock and related researchers at the
University of Sydney demonstrated that distortional buckling
failures for a wide variety of failures were well correlated
with the elastic distortional slenderness [15,21]. The form of
the presentation of the Direct Strength Method for beams
evolved somewhat from [20]. In particular, curve (2) of [20]
as discussed in [22] is identical to the distortional buckling
expressions developed in [21] and became the distortional
buckling Direct Strength curve. For local buckling, curve (3)
of [20] was employed. Appendix B of this paper provides
the Direct Strength Method expressions for beams, and the
performance against experimental data is graphically provided
in Fig. 3.

Note, for the beam data of Fig. 3 all of the Mtest values are
normalized against the moment at first yield, My . This is due
to the fact that all of the test data employed were for laterally
braced members. It is worth noting that while local–global
interaction was experimentally examined for columns, and
the same methodology applied for beams, local–global,
distortional–global, and local–distortional interactions have
not been experimentally examined in the context of the
Direct Strength Method for beams. Based on the findings
for columns local–global interaction has been included and
local–distortional and distortional–global interactions ignored.
The performance of laterally unbraced beams deserves further
study, not only in the context of the Direct Strength Method
and potential interactions, but also to better understand how
warping torsion should be treated. For moderate rotations
the influence of the torsional stress on local and distortional
buckling modes is real [23] and its potential inclusion in the
Direct Strength Method is worthy of further study.

The beam data of Fig. 3 show far more distortional buckling
failures than the column data of Fig. 2. This is due to two
reasons: (i) distortional buckling failures are more common
in typical C- and Z-sections where the web is stabilized by
the tensile portion of the bending stress and (ii) the database
of sections includes a large number of deck and hat sections
with longitudinal intermediate stiffener(s) in the compression
flange — buckling of those members in which the longitudinal

intermediate stiffeners are engaged is defined as distortional
buckling failures.

In the development of the Direct Strength Method for
C- and Z-section beams separation of local and distortional
buckling failure modes was initially somewhat difficult and
complicated by the bracing and boundary conditions used in
the testing, which typically restrained distortional buckling in
part, but not necessarily in full. Nonetheless, expressions were
arrived at as provided in the Appendices A and B and adopted
in [2]. A recent series of flexural tests and complementary
finite element analysis on a variety of C- and Z-sections in
local buckling [24–26] and distortional buckling [25–27] used
specific details to isolate the two modes and unequivocally
demonstrated the robustness of the Direct Strength Method
predictions for C- and Z-sections failing in either the local or
distortional mode. A summary of the performance of these
sections is provided in Fig. 4. Recently, additional testing
focused on distortional buckling has also been completed [28].

Finally, it is worth nothing that the testing on C- and
Z-section beams has focused on strong-axis bending and
associated buckling, extension to weak-axis bending has been
assumed. This assumption is justified in part by the inclusion of
hats and decks in the experimental database, these sections are
bent about their weak-axis, and are similar in their behaviour
to a C-section in weak axis bending. Further, the major-axis
bending modes are considered more critical since the primary
effect of weak-axis bending in comparison to strong-axis
bending is the elimination of global lateral-torsional buckling
modes.

5. Reliability and comparison to Effective Width Method

5.1. Reliability

The reliability of the Direct Strength Method was
established using the limit-states design format in use in the
United States: Load and Resistance Factor Design (LRFD).
Chapter F of [29] provides the formal expressions for deriving
the resistance factors, φ where capacity (φRn) must be greater
than demand (γ Q) in the LRFD format via φRn > Σγi Qi .
A target reliability β of 2.5 was employed. The resulting
resistance factors (φ’s) for the Direct Strength Method of [2]
and the Effective Width Method of [1] are provided in Table 1.

Overall, Table 1 indicates that the reliability of the Direct
Strength Method is as good, or better than then Effective
Width Method. Table 1 also indicates that for beams the
Effective Width Method has a lower reliability than the target
reliability (calculated φ is less than specified φ), this is
attributed primarily to the inability of [1] to properly account
for the distortional buckling limit state. For the Direct Strength
Method, most noticeable is the approximation inherent in using
a single φ factor for beams (or columns), instead of different
φ factors for each limit state, i.e. local or distortional. The
decision to use a single φ factor introduces a certain level of
approximation in the method.

For the Direct Strength Method the statistics used in the
reliability calculation of Table 1 are summarized in Table 2;
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(a) Local buckling in beams. (b) Distortional buckling in beams.

Fig. 4. Comparison of Direct Strength Method for beams to tests and additional FE results for C and Z sections in (a) local and (b) distortional buckling.

Table 1
Reliability of design methods

φ

Beams Columns

AISI (1996) specification [1]
Based on DSM dataa,b 0.77 0.82
Specified 0.90 or 0.95 0.85

Direct Strength Method [2]
Local (Mnλ or Pnλ controls) 0.89 0.79
Distortional (Mnd or Pnd controls) 0.93 0.90
Combined 0.92 0.85
Specified in [2] 0.90 0.85

a Sections which are outside the geometrical bounds of [1] or include
longitudinal web stiffeners or other features not covered in [1] are excluded
from the calculation.

b The DSM data includes all the tested sections cited in [2] as shown in Figs. 2
and 4.

Table 2
Summary statistics for Direct Strength Method development

n Pm VP

Beams
C-sections 185 1.10 0.11
C-sections with web stiffeners 42 1.12 0.07
Z-sections 48 1.13 0.13
Hat sections 186 1.10 0.15
Trapezoidal sections 98 1.01 0.13

ALL BEAMS 559 1.09 0.12
Columns
C-sections 114 1.01 0.15
C-sections with web stiffenersa 29 0.88 0.14
Z-sections 85 0.96 0.13
Rack sections 17 1.02 0.05
Hat sections 4 0.98 0.02

ALL COLUMNS 249 0.98 0.14

a Thomasson’s (1978) tests contribute to the low Pm , more recent tests by
Kwon Hancock (1992) showed much better agreement. See [2] or [37] for full
citations and further details.

included are the sample size, n, mean test-to-predicted ratio,
Pm , and coefficient of variation, Vp, broken down by use (beam
or column) and cross-section type. Table 2 underscores the
relatively large sample size of tests used to develop the Direct
Strength Method and the overall statistical accuracy of the
approach. Some statistical bias based on the cross-section type
is observed; this bias is ignored in the current implementation
of the method.

5.2. Element interaction

While the reliability calculations provides an overall
comparison of the Effective Width Method and the Direct
Strength Method they do not shed much light on the detailed
differences between the two methods. For example, for columns
the Effective Width Method and the Direct Strength Method
provide similar levels of overall reliability, but do so in very
different ways. Systematic error in the strength prediction of
columns using the Effective Width Method [1] is demonstrated
in Fig. 5. Recent work [30–33] has underscored the importance
of sharing these more detailed comparisons.

In Fig. 5 the strength predictions of the Effective Width
Method and the Direct Strength Method are compared as a
function of the web slenderness of a C-section column. As
web slenderness increases the Effective Width Method solution
becomes systematically unconservative. This behaviour is
exacerbated by the fact that for typically available C-sections
as the web becomes deeper the flange width remains at
approximately the same width, so high web slenderness is
strongly correlated with high web-to-flange width ratios (i.e. C-
sections which are ‘narrow’). This detrimental behaviour is
primarily one of local web/flange interaction, not distortional
buckling. Since the Effective Width Method uses an element
approach, no matter how high the slenderness of the web
becomes, it has no effect on the solution for the flange.
In contrast the Direct Strength Method of Fig. 5(b), which
includes element interaction (i.e. interaction between the flange
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(a) Effective Width Method of [1]. (b) Direct Strength Method of [2].

Fig. 5. Test-to-predicted ratio for (a) the Effective Width Method of [1] and (b) the Direct Strength Method of [2] for all lipped channel columns used in the
development of Direct Strength Method predictor equations plotted as a function of web slenderness (h/t).

and the web), performs accurately over the full range of
web slenderness. Proper inclusion of element interaction is
necessary for accurate strength prediction of these columns.

Taken to extremes, inclusion of elastic element interaction
can also work against the Direct Strength Method, making
the method overly conservative. This fundamental limitation
of the Direct Strength Method was reported in the first paper
to propose the approach [20]. When one part (element) of the
cross-section becomes extraordinarily slender that element will
drive the member elastic critical buckling stress to approach
zero. The Direct Strength Method will assume the member
strength, like the member elastic critical buckling stress, will
also approach zero. In contrast, the Effective Width Method
presumes only that the element itself (not the member) will have
no strength in such a situation. Deck or hat sections in bending
with low yield stress and very slender (wide) compression
flanges without intermediate stiffeners tend to fall in this
category and thus have unduly conservative predictions by the
Direct Strength Method, but quite reasonable predictions via
the Effective Width Method. However, ignoring inter-element
interaction, as the Effective Width Method traditionally does,
is not universally a good idea as illustrated for the C-section
columns in Fig. 5.

For optimized deck sections with multiple longitudinal
intermediate stiffeners in the web and the flange (see e.g. [34])
the Direct Strength Method is highly desirable over the
Effective Width Method — here the benefit is primarily
convenience not theoretical. If a computational solution
is employed for determining the elastic buckling stresses
(moments) an optimized deck section is no more complicated
than a simple hat for strength determination; but for the
Effective Width Method the calculation of effective section
properties and accurately handling the effective width of the
numerous sub-elements leads to severe complication without
increased accuracy, or worse in the case of many specifications
(e.g. [1] or [29]) no design approach is even available for such
a section using the Effective Width Method. In general, as

sections are optimized the Direct Strength Method provides a
simpler design methodology with wider applicability than the
Effective Width Method.

6. Practical developments

Implementation of the Direct Strength Method has required
a number of practical developments beyond the initial research.
This section covers these practical developments as related to
the Direct Strength Method adopted in [2]. These developments
focus on three main areas: the definition and use of prequalified
sections, performing serviceability (deflection) calculations
using the Direct Strength Method, and design aids developed
for engineers employing the Direct Strength Method in practice.

6.1. Prequalified sections

During the formal codification of the Direct Strength
Method in [2] it was determined that the users of the method
should be aware of the cross-sections employed to verify the
approach. Further, it was decided that the geometrical and
material bounds of the cross-sections used in the verification
of the Direct Strength approach should be able to use the
derived φ factors (Table 1), but new sections falling outside
the boundaries of tested sections should use slightly reduced
(more conservative) φ factors. Thus, the idea of prequalified
section (or limits) was established, and [2] includes a number
of tables that provide the geometrical and material bounds
for prequalified members. Essentially, the prequalified sections
in [2] represent a summary of the experimental database used
in verifying the Direct Strength Method. It is perhaps worthy
to note that this experimental database is larger than that used
for determining the Effective Width Method approach of [1]
or [29].
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6.2. Members with complex stiffeners and extension of
prequalified sections

In 2006, based on the work in [35] and [36] the limits on
pre-qualified sections in [2] were extended to cover C- and
Z-section beams with complex lip stiffeners. For columns the
category of Lipped C-Section and Rack Upright were merged,
as a rack upright is a C-section with a complex stiffener. In
addition, the complex stiffener limits from the original Rack
Upright category were relaxed to match those found for C-
section beams with complex stiffeners. Finally, the Effective
Width Method of [29], i.e. the main Specification for North
America, was restricted to only cover with simple lip stiffeners
— thus the Direct Strength Method became the preferred
approach for these more complicated sections.

6.3. Development of new and optimal cross-sections

No definitive method has yet been established for extending
the limits of a prequalified section, but in [37] initial guidance
is provided. Of particular interest is the potential to use a
small number of tests and extend one of the prequalified
categories — to this end the statistics of Table 2 (n, Pm, Vp)

are provided for use. For a new section the reliability may be
calculated independently using Chapter F of [1] in the same
manner as completed for Table 1. For a new section, which
is similar to an existing section in most respects, the existing
results (n, Pm, Vp) may be combined with the new test results
to determine if the new sections provide the same level of
reliability as the old. Further details are provided in [37].

6.4. Deflection calculation (serviceability)

To examine serviceability, deflections are typically deter-
mined at the service stress level of interest. In the Effective
Width Method, to account for reduced stiffness due to cross-
section instability, the effective member properties are deter-
mined at the service stress. The Direct Strength Method uses
a similar philosophy, but since the equations are in terms of
strength, the implementation is more awkward. As detailed
in [2] the service level moment (M) is used as the peak moment
(i.e. M replaces the yield moment My in the expressions) and
the deflection strength Md of the cross-section is determined.
The ratio of these two moments (Md/M) provides an approx-
imate reduction in the stiffness of the member at the service
moment, M . Results of the calculation for a typical C-section
are shown in Fig. 6 while the full solution is detailed in [37].
The approach follows the same basic trends as the Effective
Width Method for reduced stiffness in a cross-section.

6.5. Design aids

As detailed in [38] a Design Guide for the Direct Strength
Method [37] has recently been authored to aid engineers in the
application of the Direct Strength Method. The Guide covers
the following areas: elastic buckling, overcoming difficulties
with elastic buckling determination in the finite strip method,
beam design, column design, beam–column design and product

Fig. 6. Reduced stiffness as a function of service moment for a 9CS2.5x059.

Fig. 7. Example beam chart for a Z-section with lips.

development. The Design Guide includes nearly 100 pages
of design examples. The Design Guide provides a complete
discussion of the details associated with application of the finite
strip method, and the difficulties encountered as well. Topics
covered include: indistinct local mode, indistinct distortional
mode, multiple local or distortional modes (stiffeners), global
modes at short unbraced lengths, global modes with different
bracing conditions, influence of moment gradient, partially
restrained modes, boundary conditions for repeated members,
members with holes, boundary conditions at the supports not
pinned, and built-up cross-sections. The discussion is directed
at aiding engineers who need the finite strip method for more
than just cursory use.

The Design Guide provide complete details for development
of beam span tables or charts and column height tables or
charts using the Direct Strength Method. An example beam
chart is provided in Fig. 7. In this example one can readily
see how the local buckling strength, Mn`, is a reduction below
the global buckling strength, Mne. The point where Mn` and
Mne merge (approximately 9 ft) indicates that local buckling
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no longer provides a reduction in the strength of this beam (in
the main Specification [29] this occurs when the stress used
to determine the effective section, Fn is low enough that the
section is fully effective at that stress.) Further, the detrimental
impact of distortional buckling on intermediate length beams is
shown in Fig. 7.

Additional information on the design of purlins using the
Direct Strength Method beyond that in [27] is also offered
in [39]. Further, the behavior of purlins as struts was explored
in [40]; however, comparisons to the Direct Strength Method
did not incorporate the beneficial influence of rotational
restraint to the purlins as discussed in [37] and detailed
in [25]. Built-up sections are explored in [37] and in recent
research [41]. The work reported in [41] has been corrected
since its publication and the authors should be contacted for
corrected comparisons to the Direct Strength Method.

As engineers employ the Direct Strength Method on novel
cross-sections one important piece of advice from [37] is that
when in doubt about whether to define a given buckling mode as
local or distortional it is always conservative to assume it is both
modes. Such an approach is conservative, but ensures reduced
post-buckling strength at intermediate unbraced lengths (i.e. the
distortional reduction) as well as inclusion of interaction effects
(i.e. local–global interaction).

7. Advancing the Direct Strength Method

A significant amount of research work is ongoing in
relation to the Direct Strength Method. The following sections
summarize recent research on the Direct Strength Method, most
of the work detailed below has not yet been adopted in the
Specification.

7.1. Shear

No formal provisions for shear currently exist for the Direct
Strength Method. However, it is recommended in [37] that
existing provisions [29] could be suitably modified. As a
rational analysis extension the existing equations from [29] are
recast into the Direct Strength format and are suggested for use

for λv ≤ 0.815 Vn = Vy (1)

for 0.815 < λv ≤ 1.231 Vn = 0.815
√

Vcr Vy (2)

for λv > 1.231 Vn = Vcr (3)

where

λv =
√

Vy/Vcr , (4)

Vy = Aw0.60Fy, (5)

Vcr = critical elastic shear buckling force.

For members with flat webs where Vcr is determined only for
the web, these expressions yield the same results as in [29],
for more unique cross-section Vcr can be determined by finite
element analysis or other methods. Further research to validate
these expressions for unique sections is needed.

7.2. Inelastic reserve capacity in beams

Inelastic bending capacity exists in cold-formed steel beams,
despite their fundamentally thin-walled nature. For example,
for the experimental results reported in Figs. 3 and 4, of over
500 flexural tests on cold-formed steel beams approximately
100 tests are found where the bending capacity reaches 95% My
or greater including observations as high as 118% My , where
My is the moment at first yield. Current methods to account for
inelastic reserve capacity, see e.g. [29], are highly involved and
restricted in their use. A Direct Strength Method that accounts
for inelastic reserve has recently been developed [42].

Using elementary beam mechanics, and assuming elastic–
perfectly plastic material, the inelastic compressive strain at
failure is back-calculated for the tested members. Simple
relationships between local and distortional cross-section
slenderness to predict average inelastic strain demands, and
a relationship between average strain demand and inelastic
bending strength are established. These relationships are
combined to provide direct design expressions that connect
cross-section slenderness in local or distortional buckling with
the inelastic bending strength of cold-formed steel beams.
The tested members are also augmented by a detailed finite
element study of inelastic local and distortional buckling
and the inelastic strains sustained at failure. The elementary
mechanics models agree well with the finite element models
for the average membrane strains, but peak membrane and
flexural strains can be significantly higher. Thus, the local
strain demands on the section can be significantly higher than
the predicted average inelastic strain demands; nonetheless,
predicted strain demands remain lower than expected ductility
for commonly used sheet steels.

7.3. Members with holes

Research is actively underway to extend the Direct Strength
Method to members with holes [30–33,43–47]. (Note, the work
in [32,33] is an updated version of [30,31].) The primary
complication with extending the Direct Strength Method to
members with holes is that the hole introduces the potential for
interactive buckling modes triggered by the hole size, spacing,
geometry, etc. The finite strip method is not well suited to
handle members with holes therefore elastic buckling analysis,
the key input in the Direct Strength Method, must at least in the
research phase, be completed by general purpose finite element
analysis.

In [43–45] data on existing cold-formed steel columns with
holes is gathered and eigenvalue elastic buckling analysis is
completed using shell element based finite element models that
explicitly include the holes and treat the boundary conditions
accurately. Model results, such as shown in Fig. 8 where
distortional buckling occurs near the hole, but local buckling
away from the hole are common. The existing Direct Strength
Method expressions, but with Pcr`, Pcrd, and Pcre defined as the
minimum elastic buckling mode that displays characteristics of
local, distortional, and global buckling respectively, were found
to provide a reasonable and conservative strength prediction.
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Fig. 8. Mixed local and distortional mode that occurs because of a hole in a
C-section column.

Work on columns with holes continues with (i) analysis to
determine the influence of hole spacing, (ii) new experiments
on columns with holes to augment the data for sections
failing with high potential for distortional failures and/or
local–distortional interaction, and (iii) nonlinear finite element
collapse simulations to further augment the existing and new
experimental results [46,47]. In addition, a parallel study on
beams with holes has also initiated and initially shows that
with proper care in determining elastic buckling the existing
Direct Strength Method provisions appear adequate for beams
as well [47].

7.4. Angles

Although angles are geometrically one of the simplest cold-
formed steel members they are not prequalified for use in
the Direct Strength Method implementation in [2]. Recently,
Rasmussen in [48] extended his work on angles to include
a Direct Strength Method approach. The work explicitly
considers eccentricity — thus requiring a beam–column
approach even for nominally concentrically loaded angle
columns. Consistent with the Direct Strength Method the
developed beam–column approach uses the stability of the
angle under the applied compression + bending stresses which
accurately reflects the fact that some eccentricities (away from
the legs) benefit the strength and others (towards the legs) do
not.

Work performed in [49] examines a Direct Strength Method
approach that ignores eccentricity for angle columns, and also
further explores the relationship between local-plate buckling
and global-torsional buckling of equal leg angle columns; these
authors argue that when one considers the potential for multiple
half-waves along the length local-plate and global-torsional
should be treated as unique modes. For now, the Direct Strength
Method detailed in [48] is the most consistent and rational
extension of current design methodologies, though the work
in [49] may eventually provide a simpler approach.

7.5. Beam–columns

The design of beam–columns represents an opportunity
for the Direct Strength Method to significantly diverge from
current practice. Since the stability of the section can be
considered directly under the applied loads (P) and moments
(M) the interaction between P and M becomes cross-section
specific; instead of the invariant interaction equations used
in design specifications such as [29]. A basic methodology
for the application of the Direct Strength Method for beam
columns was proposed in [50,51] and a complete design
example using this methodology provided in [37]. The method
is conceptually summarized in Fig. 9 — where a cross-section
specific interaction diagram is constructed for the sections

Fig. 9. Proposed interaction diagram solutions for local buckling of unlipped
C.

reported in [52] and discussed in [53]. Please note, the results
of Fig. 9 differ from those reported in [53], in which it was
assumed that a linear interaction diagram could be used for the
Direct Strength Method, and no elastic buckling analysis was
performed for the eccentric loading.

For any applied combination of P and M (which defines the
angle θ in the interaction diagram) the combination that causes
first yield, λy , and elastic buckling, λcr , (typically determined
by finite strip analysis) are constructed. Using the same basic
Direct Strength Method equations as before, but now replacing,
e.g. Pcr and Py with λcr and λy — the nominal capacity, λn ,
may be determined. An example of the resulting Direct Strength
Method interaction curve is illustrated in Fig. 9. As discussed
above, the methodology has been applied to angles in [48].
Comparison to long-column data is provided in [54] with
further discussion and an example in [55]. Further experimental
and analytical research in this area is currently underway.

7.6. Using pure mode analysis from GBT or cFSM

Application of the Direct Strength Method is greatly
aided by computational elastic buckling analysis. In fact, the
development of the Direct Strength Method equations relied on
the finite strip method, in particular [10]. However, the finite
strip method does not always provide a definitive identification
of the modes (i.e. which result is local, distortional, and/or
global buckling), see [56] for example. Further, the finite
element method (using plate or shell elements to comprise
the section) provides no definitive method for identifying
the modes. The Direct Strength Method requires that the
modes be positively identified so that the equations may be
applied. Generalized Beam Theory (GBT) [57,58], and now
the constrained Finite Strip Method (cFSM) [10,59,60] provide
methods for definitively separating the buckling modes from
one another. This not only provides the potential for a cleaner
and clearer implementation of the Direct Strength Method, but
goes much further to opening up the possibility of automating
the strength calculation, which enables optimization efforts,
such as [61].
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One word of caution about the application of the pure
mode solutions of GBT (e.g. [62,63]) or cFSM, they are not
identically the same as those used in developing the Direct
Strength Method. As shown in [64,65] the minima in the finite
strip method curve (e.g., Fig. 1(b)) include interaction with
the other modes. In the case of local and global buckling this
interaction generally is small, but in the case of distortional
buckling the minima (i.e. Pcrd) identified by the conventional
finite strip method may be as much as 10% or more lower
than that identified by GBT or cFSM when only focused on
distortional buckling. While it may be possible to recalibrate the
Direct Strength Method curves to these “pure mode” solutions
for now it is recommended that the GBT or cFSM solutions be
used only for determining the critical half-wavelength but the
“all mode” or conventional finite strip method solution be used
for determining the elastic buckling load (or moment).

7.7. Other materials: Stainless steel, hot-rolled steel, alu-
minum, plastics

While not the focus of this review, the application of the
Direct Strength Method to other materials where cross-section
stability plays an important or dominant role in the strength
determination is underway. For example, in stainless steel
see [66]. for hot-rolled steel see [55], for aluminum see [67–
69], and for thermoplastics see [70]. The basic methodology has
even proved useful in investigating the stability of more unique
cross-sections such as the human femur [71].

7.8. Elevated temperatures

Researchers [72,73] have begun to investigate the applica-
bility of the Direct Strength Method for the design of cold-
formed steel members under fire conditions. The work is in its
beginning stages and is numerical in nature. Using shell ele-
ment based finite element models and appropriately modifying
E and fy to reflect a simulated elevated temperature both re-
search groups show good agreement with the Direct Strength
Method expressions (suitably modified for the lower E and fy).
Significant research in this area remains, but the initial results
are promising.

8. Conclusions

The Direct Strength Method is a new design methodology
for cold-formed steel members. The method has been formally
adopted as an alternative design procedure in Appendix A of the
North American Specifications for the Design of Cold-Formed
Steel Structural Members, as well as in the Australian/New
Zealand Standard for cold-formed steel design. The Direct
Strength Method employs gross cross-section properties, but
requires an accurate calculation of member elastic buckling
behaviour. Numerical methods, such as the finite strip method
or generalized beam theory, are the best choice for the required
stability calculations. The reliability of the Direct Strength
Method equals or betters the traditional Effective Width Method
for a large database of tested beams and columns. Extensive

design aids are now available for engineers who want to
apply the Direct Strength Method in design. Expansion of the
Direct Strength Method to cover, shear, inelastic reserve, and
members with holes are all underway. In addition, development
of a Direct Strength Method for beam–columns continues
and will provide cross-section specific interaction with far
greater accuracy than the simple (essentially linear) interaction
equations in current use. Much work remains for the continued
development of the Direct Strength Method, but the efforts of
many research groups around the world makes it clear that the
Direct Strength Method is on path to be a completely viable
alterative design procedure for cold-formed steel member
design.
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Appendix A. Direct Strength Method for columns

(As excerpted from Appendix 1 of the North American
Specification for the Design of Cold-Formed Steel Structural
Members, 2004 Supplement to the 2001 Edition.)

1.2.1. Column design

The nominal axial strength, Pn , is the minimum of Pne, Pnλ,
and Pnd as given below. For columns meeting the geometrical
and material criteria of Section 1.1.1.1, Ωc and φc are as
follows:

USA and Mexico Canada

Ωc (ASD) φc (LRFD) φc (LSD)
1.80 0.85 0.80

For all other columns, Ω and φ of Section A1.1(b) apply.

1.2.1.1. Flexural, torsional, or torsional–flexural buckling
The nominal axial strength, Pne, for flexural, . . . or torsional-

flexural buckling is

for λc ≤ 1.5Pne =

(
0.658λ2

c

)
Py (1.2.1.1)

for λc > 1.5Pne =

(
0.877

λ2
c

)
Py (1.2.1.2)

where

λc =
√

Py/Pcre (1.2.1.3)

Py = Ag Fy (1.2.1.4)

Pcre = Minimum of the critical elastic column buckling load

in flexural, torsional, or torsional–flexural buckling . . . .
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1.2.1.2. Local buckling
The nominal axial strength, Pnλ, for local buckling is

for λ` ≤ 0.776 Pnλ = Pne (1.2.1.5)

for λ` > 0.776

Pnλ =

[
1 − 0.15

(
Pcr`

Pne

)0.4
](

Pcr`

Pne

)0.4

Pne
(1.2.1.6)

where

λ` =
√

Pne/Pcr` (1.2.1.7)

Pcrλ = Critical elastic local column buckling load . . .

Pne is defined in Section 1.2.1.1.

1.2.1.3. Distortional buckling
The nominal axial strength, Pnd , for distortional buckling is

for λd ≤ 0.561 Pnd = Py (1.2.1.8)

for λd > 0.561

Pnd =

(
1 − 0.25

(
Pcrd

Py

)0.6
)(

Pcrd

Py

)0.6

Py
(1.2.1.9)

where

λd =
√

Py/Pcrd (1.2.1.10)

Pcrd = Critical elastic distortional column buckling load . . .

Py is given in Eq. (1.2.1.4).

Appendix B. Direct Strength Method for beams

(As excerpted from Appendix 1 of the North American
Specification for the Design of Cold-Formed Steel Structural
Members, 2004 Supplement to the 2001 Edition.)

1.2.2. Beam design

The nominal flexural strength, Mn , is the minimum of
Mne, Mnλ, and Mnd as given below. For beams meeting the
geometrical and material criteria of Section 1.1.1.2, Ωb and φb
are as follows:

USA and Mexico Canada

Ωc (ASD) φc (LRFD) φc (LSD)
1.67 0.90 0.85

For all other beams, Ω and φ of Section A1.1(b) apply.

1.2.2.1. Lateral-torsional buckling
The nominal flexural strength, Mne, for lateral-torsional

buckling is

for Mcre < 0.56My Mne = Mcre (1.2.2.1)

for 2.78My ≥ Mcre ≥ 0.56My

Mne =
10
9

My

(
1 −

10My

36Mcre

)
(1.2.2.2)

for Mcre > 2.78My Mne = My (1.2.2.3)

where

My = S f Fy, where S f is the gross section modulus

referenced to the extreme fibre in first yield (1.2.2.4)

Mcre = Critical elastic lateral-torsional buckling moment . . . .

1.2.2.2. Local buckling
The nominal flexural strength, Mnλ, for local buckling is

for λ` ≤ 0.776 Mnλ = Mne (1.2.2.5)

for λ` > 0.776

Mnλ =

(
1 − 0.15

(
Mcr`

Mne

)0.4
)(

Mcr`

Mne

)0.4

Mne
(1.2.2.6)

where

λ` =
√

Mne/Mcr` (1.2.2.7)

Mcr` = Critical elastic local buckling moment . . .

Mne is defined in Section 1.2.2.1.

1.2.2.3. Distortional buckling
The nominal flexural strength, Mnd , for distortional buckling

is

for λd ≤ 0.673 Mnd = My (1.2.2.8)

for λd > 0.673

Mnd =

(
1 − 0.22

(
Mcrd

My

)0.5
)(

Mcrd

My

)0.5

My
(1.2.2.9)

where

λd =
√

My/Mcrd (1.2.2.10)

Mcrd = Critical elastic distortional buckling moment . . .

My is given in Eq. (1.2.2.4).
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