But first!

Eads, Eiffel and the Forth Bridge

> The big $19^{\text {th }}$ century iron and steel bridges

1. How arches carry load: Eads Bridge
2. Two hinged arches: Garabit
3. Details of form in metal arches: Garabit and Mungstener
4. Influence of structural failure on subsequent design
5. Strength and safety in cantilever form: Forth Bridge

- An exercise to help with next week's homework and to help us identify the skills of your friends and neighbors in the class.
- Let's do a little statics exercise in the style of a magazine quiz, give yourself a point each time you know the answer to the questions that follow - we will sum points to find our statics gurus!

Q1

- In two dimensions what are the three equations of equilibrium?
- (1)
- (2)
- (3)
- Give yourself a point if you know them.

Answer 1

- In two dimensions what are the three equations of equilibrium?
- (1) $\Sigma \mathrm{F}_{\mathrm{x}}=0$
- (2) $\Sigma \mathrm{F}_{\mathrm{y}}=0$
- (3) $\Sigma \mathrm{M}=0$
- Give yourself a point if you know them.

Q2

- Make a free body diagram of the following little bridge.

- Give yourself a point if you know how. ©

Answer 2

- Make a free body diagram of the following little bridge.

- Give yourself a point if you know how. ©

Q3

- Write the equation for sum of forces in the y

- Give yourself a point if you know how. ()

Answer 3

- Write the equation for sum of forces in the y

- Give yourself a point if you know how. ()

Q4

- Write the equation for sum of moments at a

- Give yourself a point if you know how. ()

Answer 4

- Write the equation for sum of moments at a

$$
\Sigma \mathrm{M}_{\mathrm{a}}=0 \quad 10 \mathrm{ft}^{*} \mathrm{R}_{\mathrm{by}}-3 \mathrm{ft} * 3001 \mathrm{bs}=0
$$

$$
\mathrm{R}_{\mathrm{by}}=90 \mathrm{lbs}
$$

\& $\mathrm{R}_{\mathrm{ay}}=300-90=210 \mathrm{lbs}$

- Give yourself a point if youknow how. (e)

Q5

- I enjoy helping others because it helps me to understand concepts better too.
- Give yourself a point if you agree with the above statement.

Totals

- 1 - No worries, but expect to ask some questions of your new friends and neighbors (and just wait until a ask them to draw or witt.. ©)
- 2 - Hey this stuff is new to me! That's OK, lean on your friend and neighbors a bit
- 3 - Statics is neither your friend nor your enemy - help and be helped!
- 4 - Great, you know a lot and can help others, please do so!
- 5 - Statics Guru with a positive attitude. Your help is needed and expected!

Moving time
 (just for today)

- Establish the 3's, 4's and 5's..
- Find our way into groups of 2 or 3 these are not permanent groups, don't fret!
- Introduce yourself

Moving time (just for today)

- Establish the 3's, 4's and 5's..
- Find our way into groups of 2 or 3 these are not permanent groups, don't fret!
- Introduce yourself
- Please exchange contact information amongst your group (cell, email, whatever)
- Now we are ready!

Eads, Eiffel and the Forth Bridge

The big $19^{\text {th }}$ century iron and steel bridges

Eads Bridge - steel - 520 feet - 1874

From a book written by Eads

Tension tie provides reaction

Fig. 7

SAINT LOUIS

WORLD.

THIRD EDITION.

Court of inquiry proceedings, for Sir Thomas Bouch re: collapse of the Firth of Tay Br.

Q: Sir Thomas, did you in designing this bridge, make any allowance at all for wind pressure?
A: Not specially.
Q : You made no allowance?
A: Not specially.

Scanning the Forth Bridg

Sobluniphe one.en.

can you identify tension and compression?

Eads Br. Garabit Br. Forth Br.

Economy-Efficiency-Elegance

Eiffel Tower Structural Study

introduction to statics

Tools and methods for structural analysis

Free body diagrams
Equilibrium
Load path
Free Body Diagrams

Civil Engineering Units

- Lots of imperial units..
- The kip? kip = kilopound = 1000 lb
- The psf? a pound per square foot
- say you weigh 150 lb and are standing on a part of the floor which is $1 \mathrm{ft} \times 1 \mathrm{ft}$, you are $=150 \mathrm{psf}$
- other way - say a constant wind of 40 psf is blowing on a building which is $100 \mathrm{ft} \times 100 \mathrm{ft}$ across - the force is 40 psf X 100 ft X $100 \mathrm{ft}=40,000 \mathrm{lb}$
$-40,000 \mathrm{lb}=40 \mathrm{kips}$
- Also... psi and ksi, pound/sq. in, and kip/sq. in
- Materials may be described as having limit stresses in psi or ksi, e.g., typical yield stress of steel $=50 \mathrm{ksi}$

Equilibrium

$\Sigma \mathrm{M}_{\text {section }}=0->\mathrm{M}-\mathrm{p}(\mathrm{H}-\mathrm{h})(\mathrm{H}-\mathrm{h}) / 2=0$

$\Sigma \mathrm{M}_{\text {section }}=0->\mathrm{M}-\mathrm{p}(\mathrm{H}-\mathrm{h})(\mathrm{H}-\mathrm{h}) / 2=0$
$\mathrm{M}=[\mathrm{p}(\mathrm{H}-\mathrm{h})][(\mathrm{H}-\mathrm{h}) / 2]=\mathrm{P}(\mathrm{H}-\mathrm{h}) / 2$

$\mathrm{M}=[\mathrm{p}(\mathrm{H}-\mathrm{h})][(\mathrm{H}-\mathrm{h}) / 2]=\mathrm{P}(\mathrm{H}-\mathrm{h}) / 2$
$\mathrm{C}=-\mathrm{T}=\mathrm{M} / \mathrm{w}$

$\mathrm{M}=[\mathrm{p}(\mathrm{H}-\mathrm{h})][(\mathrm{H}-\mathrm{h}) / 2]=\mathrm{p}(\mathrm{H}-\mathrm{h})^{2} / 2$

Load path

or, how the load travels to the ground

All forces or loads must eventually get to the ground.
Can we trace the path of tension of compression?

All forces or loads must eventually get to the ground.
Can we trace the path of tension of compression?

All forces or loads must eventually get to the ground. Can we trace the path of tension of compression?
locomotive

Pick the person on the railing, the carriage, or the locomotive describe the load path for the force you have selected..

