19th Century Iron Lenticular Truss Bridges from the Berlin Iron Bridge Company (and Other Historic Bridges of Western Ma.)

Dr. A. Lutenegger Professor of Civil & Environmental Engineering University of Massachusetts Amherst, Ma

Form and forces in lenticular trusses Marketing and mass production, The Berlin Company Seeing the built environment

Pre-1878 Iron Lenticular Bridges

- R. Stephenson 1824 Gaunless Bridge
- R. Stephenson 1838 Kilsby Bridge
 - Von Pauli 1857 Isar Bridge
- Brunel 1859 Saltash Bridge
- Gerber 1860 Mainz Bridge
- Lohse 1868 Hamburg Bridge

Gaunless Bridge

Gaunless Bridge

Gaunless Bridge

Brunel's Saltash Bridge

Brunel's Saltash Bridge

Mainz Bridge

Hamburg Bridge

Lindenthal's Monongahela Bridge

Monongahela Bridge

Patents Prior to 1878

- Barnes 6,230 1849
 - Stanley 8,337 185
- Hervey & Osborne 13,461 1855
- Dieckmann 113,030 1871
- Harding 132,398 1972
 - Eads 142,381 1873

Douglas 1877

DESIGN FOR AN ELLIPTICAL TRUSS BRIDGE.

Douglas 1878 Patent

CHAPTER X.

LENTICULAR TRUSSES.

.

214.—The form of this peculiar truss, known also as the Pauli System, is shown in the following figure :

It is composed of two equal parabolic arcs for chords meeting at the ends, and braced with vertical and inclined braces. It is not capable of supporting any greater weight than a Bow String Truss of equal depth and length, and practically possesses many disadvantages.

WORKS OF THE BERLIN IRON BRIDGE COMPANY, 1900.

The Driving Force

Send for Illustrated Catalogue.

CHAS. M. JARVIS,

BURR K. FIELD, GEO. H. SAGE, F. L. WILCOX, Pres't and Chief Engineer. Vice-Pres't. Secretary. Treasurer. Office and Works: EAST BERLIN, CONN.

The above illustration is taken direct from a photograph made during the construction and shows the details of an from Building designed and hundt by us for the Newspert News Shup, Building and Bry Deck Compacy, at Newpert News, Va. The building is 60 ft, in with by 300 ft. In hearth, and is two stories high-the lower floor being used for a Ship Shed for purching, benching, ettending, ettending, ettending, ettending, ettending, without a start of the building, ettending, ettending, when due to be a Mold Lott. Outside of the building, ettending, ettending, ettending, ettending, when any material may be stored and still protected from the weather. Wide optimism are placed every 40 ft, so that raw material may be taken in, and finished product moved wit, cheapity and quickly. The supporting frame is all iren throughout, and between the iron posts on the sides is a light brick wad.

Layout of BIBCO Plant

Inside **BIBCO** Plant

Styles of Lenticular Bridges

Configurations of Bridges

Average in Dermanys.

- Through Truss Bridges
- Pony Truss Bridges

The Success of BIBCO Bridges

- From 1879 to 1900 over 600 Lenticular Bridge Structures Built
 - Aggressive Marketing
- Modular Design & Construction
- Mass Production of Components
 - Rapid Construction Schedule

About 55 Extant Bridges

- Massachusetts
- Connecticut
- New Hampshire
- Vermont
- Rhode Island

- New York
- Pennsylvania
- Now Jorsov
- Texas

What's the Current Status of BIBCO Lenticular Brides?

- 1. Some bridges have been refurbished.
- 2. Some bridges are waiting for refurbishment.
- 3. Some bridges are waiting for discovery.

Bardwell's Ferry Bridge, Shelburne, Ma.

Rhule Road. Malta, N.Y.

Depot Rd. Bridge, Colchester, N.H.

Sheffield St. Waterbury, Ct.

Candor, N.Y.

Melrose Rd. E. Windsor,

2007 Lenticular Truss Bridge

Other Historic Bridges of Western Ma.

- Suspension Bridges
- Iron Truss Bridges
- Steel Arch Bridges
- Concrete Arch Bridges

Stillwater Bridge – Deerfield 1870

B & M Connecticut River Bridge -Hadley 1887

Hotel Street Bridge – Florence

Bridge of Flowers and Main Street Bridges - Shelburne

Main Street Bridge

Bridge of Flowers

French King Bridge – Irving Steel Deck Arch Bridge 1932

Farley Rd. Bridge – Erving (Phoenix Bridge Co.)

Shattuckville Rd. Bridge

East Mineral Road Bridge – Montague 1888

11th Street Bridge – Double Intersecting Warren Truss 1915

Adamsville Rd. Bridge - Colrain

Ct. River Bridge - Springfield

Ist Avenue Bridge – Turner's Falls

Ball Pipe Bridges

Eiffel Tower Structural Study

introduction to statics

Tools and methods for structural analysis

Free body diagrams Equilibrium Load path

Free Body Diagrams

Civil Engineering Units

- Lots of imperial units..
- The kip? kip = kilopound = 1000 lb
- The psf? a pound per square foot
 - say you weigh 150 lb and are standing on a part of the floor which is 1ft x 1ft, you are = 150psf
 - other way say a constant wind of 40 psf is blowing on a building which is 100ft x 100ft across – the force is 40psf X 100ft X 100ft = 40,000 lb
 - -40,000 lb = 40 kips
- Also... psi and ksi, pound/sq. in, and kip/sq. in
 - Materials may be described as having limit stresses in psi or ksi, e.g., typical yield stress of steel = 50 ksi

Load path

or, how the load travels to the ground

All forces or loads must eventually get to the ground. Can we trace the path of tension of compression?

All forces or loads must eventually get to the ground. Can we trace the path of tension of compression?

All forces or loads must eventually get to the ground. Can we trace the path of tension of compression?

locomotive

