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Abstract This paper provides a methodology to solve Nash–Cournot energy
production games allowing some variables to be discrete. Normally, these
games can be stated as mixed complementarity problems but only permit
continuous variables in order to make use of each producer’s Karush–Kuhn–
Tucker conditions. The proposed approach allows for more realistic modeling
and a compromise between integrality and complementarity to avoid infeasible
situations.
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1 Introduction

This paper considers a Nash–Cournot game between energy producers in
which each player solves a discretely-constrained optimization problem. Typ-
ically, such an optimization problem maximizes producer profits subject to
operational and investment decisions. By taking the Karush–Kuhn–Tucker
(KKT; Bazaraa et al. 1993) conditions to each player’s problem and combining
them, perhaps with additional market-clearing conditions in some cases, results
in a mixed complementarity problem (MCP; Cottle et al. 1992) which has
recently seen a lot of applications in energy and other issues (e.g., Bard 1983,
1988; Bard and Moore 1990; Karlof and Wang 1996; Labbé et al. 1998; Luo et
al. 1996; Moore and Bard 1990; Wen and Huang 1996) and more recently (e.g.,
Bard et al. 2000, Fuller 2008, 2010 (personal communication); Gabriel and
Leuthold 2010; Gabriel et al. 2010; Hu et al. 2009; Marcotte et al. 2001; O’Neill
et al. 2005; Scaparra and Church 2008). Equilibrium problems, in general, have
been well formulated and studied in power markets (García-Bertrand et al.
2005; Leuthold et al. 2012; Metzler et al. 2003; Oggioni et al. 2011; Smeers
2003) as well as natural gas markets (Abada et al. 2012; Siddiqui and Gabriel
2012).

Crucial to expressing the Nash–Cournot game between two or more energy
producers as an MCP is the assumption that the KKT conditions can be
formulated. When for example some of the variables are integer-valued (e.g.,
binary go/no go decisions), the KKT conditions are not valid. In this paper
we show a new approach that provides a compromise between complemen-
tarity and integrality. This is done by first relaxing the discretely-constrained
variables to their continuous analogs, taking KKT conditions for this relaxed
problem, converting these conditions to disjunctive-constraints form (Fortuny-
Amat and McCarl 1981), and then solving them along with the original integer
restrictions re-inserted in a mixed-integer, linear program (MILP). The integer
conditions are then further relaxed, but targeted using penalty terms in the
objective function. This MILP relaxes both complementarity and integrality
but tries to find minimum deviations for both and as such is an example of
bi-objective problem (Cohon 1978). When an equilibrium solution exists that
additionally satisfies the integrality conditions, we show that it can be found.

In Section 2 we first provide the general form of this problem which we call
discretely-constrained mixed linear complementarity problem (DC-MLCP)
and which was originally stated in Gabriel et al. (2012, 2013) but not specialized
to the current context. The MILP that is used to solve the DC-MLCP is shown
to have a solution under mild conditions. Then, we specialize the DC-MLCP
to the current context of a discretely-constrained Nash–Cournot game between
energy producers.

Nash–Cournot problems without discrete variables have long been studied
and it is well known that they can be expressed either as nonlinear complemen-
tarity or variational inequality problems (Facchinei and Pang 2003). Allowing
for discrete variables makes the problem more realistic as in some settings, for
example, production can only occur in discrete amounts or there are binary
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decisions about starting up/shutting down or investing in some generation or
transmission capacity. We show a correspondence between the solution set to
the discretely-constrained Nash game and integer solutions to the continuous
relaxation.

Section 2 provides the mathematical formulation of the considered model
and describes the proposed solution technique. Section 3 provides numerical
examples that validate the proposed approach followed by conclusions and
extensions in Section 4 and an Appendix with specific key formulations.

2 Problem definition

Consider a general, discretely-constrained mixed linear complementarity
problem. The formulation is as follows: given the vector q = (

q1 q2
)T and

matrix A =
(

A11 A12
A21 A22

)
, find z = (

zT
1 , zT

2

)T ∈ Rn1 × Rn2 such that:

0 ≤ q1 + (
A11 A12

) ( z1
z2

)
⊥z1 ≥ 0 (1a)

0 = q2 + (
A21 A22

) ( z1
z2

)
, z2 free (1b)

(z1)c ∈ R+, c ∈ C1, (z1)d ∈ Z+, d ∈ D1 (1c)

(z2)c ∈ R, c ∈ C2, (z2)d ∈ Z , d ∈ D2 (1d)

We partition the indices for zi, i = 1, 2 into continuous-valued (denoted by
the set Ci) and discrete-valued variables (denoted by the set Di ), i.e., zi =
(
(zi)

T
Ci

(zi)
T
Di

)T
, i = 1, 2 with the continuous variables shown first, without

loss of generality. From here on for specificity, unless otherwise indicated,
the discrete sets {0, 1, . . . , N} and {−N1, . . . , −1, 0, 1, . . . , N2} will be assumed
(for z1and z2 respectively) with N, N1, N2 nonnegative integers. First, the
complementarity relationship and nonnegativity for z1, Eq. (1a) can be recast
as the following disjunctive constraints (Fortuny-Amat and McCarl 1981):

0 ≤ q1 + (
A11 A12

)
(

z1
z2

)
≤ M1 (u) (2a)

0 ≤ z1 ≤ M1 (1 − u) , u j ∈ {0, 1} , ∀ j (2b)

where M1 is a suitably large, positive constant and u is a vector of binary
variables. The other constraints (1b) can be used as is and taking Eq. (1b)
with Eq. (2) would represent a reformulation of Eq. (1) with just continuous
variables z1, z2 allowed. If we assume that there were a solution to this version
of the original problem, the existence of a solution would not necessarily be
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guaranteed if we imposed the discrete restrictions from Eqs. (1c) and (1d). The
general formulation provided in Gabriel et al. (2012) to solve the discretely-
constrained linear, mixed complementarity problem is based on minimizing
deviations from complementarity and/or integrality:

min

⎡

⎣ω1

⎡

⎣
∑

r∈D1

N∑

i=0

(ε1ri)
+ + (ε1ri)

− +
∑

r∈D2

N2∑

i=−N1

(ε2ri)
+ + (ε2ri)

−
⎤

⎦+ω2
[
1Tσ

]
⎤

⎦

(3a)

0 ≤ q1 + (A11 A12)

(
z1
z2

)
≤ M1 (u) + M1σ (3b)

0 ≤ z1 ≤ M1 (1 − u) + M1σ (3c)

0 = q2 + (A21 A22)

(
z1
z2

)
(3d)

u j ∈ {0, 1} , ∀ j (3e)

− M2 (1 − w1ri) ≤ (z1)r − i − ε1ri ≤ M2 (1 − w1ri) (3f)

i = 0, 1, . . . , N, r ∈ D1

− M2 (1 − w2ri) ≤ (z2)r − i − ε2ri ≤ M2 (1 − w2ri) (3g)

i = −N1, . . . , −1, 0, 1, . . . , N2, r ∈ D2

ε1ri = (ε1ri)
+ − (ε1ri)

− , i = 0, 1, . . . , N, r ∈ D1 (3h)

ε2ri = (ε2ri)
+ − (ε2ri)

− , i = −N1, . . . , −1, 0, 1, . . . , N2, r ∈ D2 (3i)

N∑

i=0

w1ri = 1,

N2∑

i=−N1

w2ri = 1 (3j)

w1ri ∈ {0, 1} , i = 0, 1, . . . , N, r ∈ D1 (3k)

w2ri ∈ {0, 1} , i = −N1, 1, . . . , N2, r ∈ D2 (3l)

σ ≥ 0 (3m)

(ε1ri)
+ , (ε1ri)

− ≥ 0, i = 0, 1, . . . , N, r ∈ D1 (3n)

(ε2ri)
+ , (ε2ri)

− ≥ 0, i = −N1, 1, . . . , N2, r ∈ D2 (3o)

Here the variables ε and σ relax integrality and complementarity respec-
tively. The goal of the formulation above is to minimize these deviations. The
positive scalar parameters ω1, ω2 express the relative importance of the two
parts of the objective function: minimizing the relaxations for integrality and
complementary, respectively. Choosing their values shows relative importance
of relaxing complementarity or integrality. Setting ω1 = 1, ω2 = 0, for exam-
ple, would mean that deviations from integrality are to be minimized while
deviations from complementary can be relaxed. The following two theorems
from Gabriel et al. (2012) confirm that a solution to this DC-MLCP exists.
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Theorem 1 Let M2 ≥ max {N, N1 + N2}. Then, this value will be valid for the
constraints (3f) and (3g). (See Gabriel et al. 2012 for Proof )

Assumption 1 Define the set

S =
{
(z1, z2) |0 ≤ q1 + (

A11 A12
)
(

z1
z2

)
, 0 = q2 + (

A21 A22
)
(

z1
z2

)
, z1 ≥ 0

}

Then, assume that S is nonempty and there exists a constant M∗ such that

M∗ ≥ max {‖z1‖∞ , ‖z2‖∞} =
∥∥
∥
∥

(
z1
z2

)∥∥
∥
∥∞

for all (z1, z2) ∈ S.

Infeasibility of the relaxed version of the problem (without the inte-
ger restriction) will result in infeasibility of the integer-constrained ver-
sion as well. Assuming a solution exists for the relaxed problem is au-
tomatically guaranteed for certain class of matrices. For example if A22
is invertible, then solving for z2 results in the reduced conditions: S =
{(z1) |0 ≤ (

q1 − A12 A−1
22 q2

) + (
A11 − A12 A−1

22 A21
)

z1, z1 ≥ 0}. By Assumption
1, the LCP

((
A11 − A12 A−1

22 A21
)

,
(
q1 − A12 A−1

22 q2
))

needs to be feasible. A
sufficient (and stronger condition) is that

(
A11 − A12 A−1

22 A21
)

be an S-matrix
(Cottle et al. 1992). Since we assume that the discretely-constrained variables
(z1)d ∈ Z+, d ∈ D1, (z2)d ∈ Z , d ∈ D2 can only take on a finite set of integer
values {0, 1, . . . , N} it is not unreasonable that the continuous components
(z1)c ∈ R+, c ∈ C1, (z2)c ∈ R, c ∈ C2 also be bounded so the second assump-
tion is also reasonable for this setting.

Note that relative to Eqs. (3b) and (3c) it is sufficient to just require that the
variables are bounded as stated in the second part of the assumption above.
The reason is that if there is an M∗ ≥ max {‖z1‖∞ , ‖z2‖∞}, then letting A11 =⎡

⎢
⎣

A1
11
...

Ap
11

⎤

⎥
⎦ , A12 =

⎡

⎢
⎣

A1
12
...

Ap
12

⎤

⎥
⎦ where Ai

11, A j
12 are respectively, the ith and j th rows

of A11 and A12,

q1+
(

A11 A12
)
(

z1
z2

)
≤q1+

⎛

⎜
⎝

∥
∥A1

11

∥
∥

1 ‖z1‖∞
...∥

∥Ap
11

∥
∥

1 ‖z1‖∞

⎞

⎟
⎠+

⎛

⎜
⎝

∥
∥A1

12

∥
∥

1 ‖z2‖∞
...∥

∥Ap
12

∥
∥

1 ‖z2‖∞

⎞

⎟
⎠≤

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ M1

where

M1 ≥ max
{

M∗, max
i

{
(q1)i

} + max
j

{∥∥
∥A j

11

∥∥
∥

1
+
∥∥
∥A j

12

∥∥
∥

1

}
M∗

}
(4)

and using the fact that for all x, y ∈ Rn,
∣∣xT y

∣∣ ≤ ‖x‖1 ‖y‖∞ which is a special
case of Hölder’s inequality (Horn and Johnson 1985). Additionally, if a
specific value for M∗ is known, then computing M1 as shown in Eq. (4) is
straightforward as it only involves input data in the problem, namely, q1, A11,

and A12.
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With this first assumption stated, we have the following theorem.

Theorem 2 If Assumption 1 holds, and M1 ≥ M∗, M2 ≥ max {N, N1 + N2}
then problem (3) always has a solution. (See Gabriel et al. 2012 for Proof )

Note that in this paper, this method requires using the Fortuny-Amat and
McCarl reformulation and introducing binary variables. This can result in a
large mixed-integer program and can become computationally intensive. How-
ever, any method of reformulating complementary constraints as in Siddiqui
(2011) and Siddiqui and Gabriel (2012) can be substituted for the Fortuny-
Amat and McCarl formulation. Studying the best method for reformulating
complementary constraints to use with the method in this paper is the topic of
ongoing and future research.

Consider the following DC-Nash game. For instance, there are several
Cournot power producers that maximize their profit simultaneously by choos-
ing their optimal production quantities. Their objective function (profit) de-
pends on the production of the competitors through the market demand curve
(relationship between the total production and the market price). Players p =
1, ..., P seek optimal values for their decision vectors x̂p ∈ X p, p = 1, ..., P by
minimizing their cost functions (or negative profit functions) f p(·, x−p) such
that

f p (x̂p, x̂−p) ≤ f p (xp, x̂−p) , ∀xp ∈ X p (5)

Here xp ∈ Rnp represents the variables under player p’s control with x−p

the remaining variables for the other players. Also, x̂ means an equilibrium
value to x, and X p = Cp ∩ Z

np
+ where

Cp =
{

xp|gp
j (xp) ≤ 0, j = 1, . . . , Ip; hp

k (xp) = 0
, k = 1, . . . , Ep; xp

q ≥ 0, q ∈ Sp

}

and Z
np
+ is the set of nonnegative, integer-valued variables, i.e., xp

r ∈ Z+, r ∈{
1, . . . , np

} \Sp. Here Sp represents those indices for xp that relate to contin-
uous variables. A continuous relaxation would then be to replace X p by Cp,
i.e., find x̂p, p = 1, . . . , P such that

f p (x̂p, x̂−p) ≤ f p (xp, x̂−p) , ∀xp ∈ Cp (6)

or equivalently that x̂p solves

min
xp

f p (xp, x̂−p) (7a)

s.t. gp
j

(
xp) ≤ 0, j = 1, . . . , Ip (7b)

hp
k

(
xp) = 0, k = 1, . . . , Ep (7c)

xp
q ≥ 0, q ∈ Sp (7d)
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We want the Karush–Kuhn–Tucker (KKT) conditions of Eq. (7) to be
equivalent to solving that optimization problem so we assume that the func-
tions f p

(·, x−p
)

are convex and a constraint qualification (see Bazaraa et
al. 1993, for generalization of these assumptions that will also lead to KKT
conditions being sufficient for optimality) holds (e.g., gp

j (xp) , hp
k (xp) linear).

The KKT conditions for player p’s relaxed problem (7) are to find xp ∈
Rnp, λp ∈ RIp, γ p ∈ REp such that

0 ≤ ∇xp f p (xp, x−p) +
∑

j∈I p

∇gp
j

(
xp) λ

p
j +

∑

k∈Ep

∇hp
k

(
xp) γ

p
k ⊥xp ≥ 0 (8a)

0 ≤ −gp
j

(
xp)⊥λ

p
j ≥ 0, j = 1, . . . , Ip (8b)

0 = hp
k

(
xp) , γ

p
k free, k = 1, . . . , Ep (8c)

An interesting question is whether the set of xp that solves Eq. (8) but
with the discrete restrictions for xp

r ∈ Z+, r ∈ {
1, . . . , np

} \Sp corresponds to
the solution set of the original problem (5). The next result shows that this
correspondence is correct.

Theorem 3 Let S be the set of solutions to the discretely-constrained Nash
game Eq. (5) and T be the set of solutions to Eq. (8) for which xp

r ∈ Z+, r ∈{
1, . . . , np

} \Sp. Then, S=T.

Proof Let x̂p ∈ T, then x̂p solves

min
xp

f p (xp, x̂−p) (9a)

s.t. gp
j

(
xp) ≤ 0, j = 1, . . . , Ip (9b)

hp
k

(
xp) = 0, k = 1, . . . , Ep (9c)

xp
q ≥ 0, q ∈ Sp (9d)

xp
r ∈ Z+, r ∈ {

1, . . . , np
} \Sp (9e)

or that

f p (x̂p, x̂−p) ≤ f p (xp, x̂−p) ,

∀xp ∈ Cp ∩ {
xp

r ∈ Z+|r ∈ {
1, . . . , np

} \Sp
}

⇔ f p (x̂p, x̂−p) ≤ f p (xp, x̂−p) , ∀xp ∈ X p

so that x̂p ∈ S. Clearly the steps are reversible so the result is shown.
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To be able to end up with a linear, mixed-integer program, we restrict
the payoff function to be quadratic and the constraint functions to be linear,
that is

f p (xp, x−p) = 1
2

(
xp

x−p

)T
(

N p
1 N p

2

N p
2 N p

3

)(
xp

x−p

)

+ (
cp)T

xp (10)

and

gp
j

(
xp) =

(
dp

j

)T
xp − κ p ≤ 0, j = 1, . . . , Ip (11)

hp
k

(
xp) = (

ep
k

)T
xp − δ p = 0, k = 1, . . . , Ep (12)

To reformulate the continuous relaxation of the original problem (5), we
use the complementarity problem form of the Nash problem suitably relaxed
as shown in Eq. (8). These KKT conditions are equivalent to a set of disjunctive
constraints of the form:

0 ≤ ∇xp f p (xp, x−p) +
∑

j∈I p

∇gp
j

(
xp) λ

p
j +

∑

k∈Ep

∇hp
k

(
xp) γ

p
k ≤ Mp

1 up (13a)

0 ≤ xp ≤ Mp
1

(
1 − up) (13b)

0 ≤ −gp
j

(
xp) ≤ Mp

1 v
p
j , j = 1, . . . , Ip (13c)

0 ≤ λ
p
j ≤ Mp

1

(
1 − v

p
j

)
, j = 1, . . . , Ip (13d)

0 = hp
k

(
xp) , γ

p
k free, k = 1, . . . , Ep (13e)

up ∈ {0, 1}np (13f)

v p ∈ {0, 1}Ip (13g)

for a suitably large value of Mp
1 that can be computed as decribed in Theorems

1 and 2. An alternative method is also provided in Gabriel and Leuthold
(2010). Using the quadratic form of f p and the linear forms of gp and hp from
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above, results in the following linear, mixed-integer program with arbitrary
objective function

∑P
p=1 (zp)T xp and the integer restrictions added back:

min
xp

P∑

p=1

(
zp)T

xp (14a)

s.t. for all p = 1, . . . , P

0 ≤ 1
2

(
N p

1 + N pT
1

)
xp + 1

2

(
N p

2 + N pT
2

)
x−p + cp

+
∑

j∈I p

dp
j λ

p
j +

∑

k∈Ep

ep
kγ

p
k ≤ Mp

1 up (14b)

0 ≤ xp ≤ Mp
1

(
1 − up) (14c)

0 ≤ −
(

dp
j

)T
xp + κ p ≤ Mp

1 v
p
j , j = 1, . . . , Ip (14d)

0 ≤ λ
p
j ≤ Mp

1

(
1 − v

p
j

)
, j = 1, . . . , Ip (14e)

0 = (
ep

k

)T
xp − δ p, γ

p
k free, k = 1, . . . , Ep (14f)

up ∈ {0, 1}np , v p ∈ {0, 1}Ip (14g)

xp
r ∈ Z+, r ∈ {

1, . . . , np
} \Sp (14h)

We only need feasibility of this problem and the arbitrary objective function
is just included as a potential lever and for purposes of moving onto the
next formulation. Of course the above problem may be infeasible for several
reasons. First, the original problem (5) may itself not be feasible due to
incompatible constraints in the players’ problems. Second, the problem may
not be feasible since there may be a conflict between integrality of the vec-
tor xp

r ∈ Z+, r ∈ {
1, . . . , np

} \Sp and complementarity of the system enforced
after the fact via the disjunctive constraints.

To ensure that the above reformulation does not have a conflict between
complementarity and integrality,1 the following relaxed version of the problem
is employed.

min ω1

⎡

⎣
P∑

p=1

∑

r∈{1,...,np}\Sp

N∑

i=0

(
ε

p
ri

)+ + (
ε

p
ri

)−
⎤

⎦ + ω2
[
1T (

σ p + ψ p)] (15a)

s.t. for all p = 1, . . . , P

0 ≤ 1
2

(
N p

1 + N pT
1

)
xp + 1

2

(
N p

2 + N pT
2

)
x−p

1We assume that the continuous form of the problem is feasible.
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+ cp +
∑

j∈I p

dp
j λ

p
j +

∑

k∈Ep

ep
kγ

p
k ≤ Mp

1

(
up) + Mp

1 σ p (15b)

0 ≤ xp ≤ Mp
1

(
1 − up) + Mp

1 σ p (15c)

0 ≤ −
(

dp
j

)T
xp + κ p ≤ Mp

2

(
v

p
j

)
+ Mp

2 ψ
p
j (15d)

0 ≤ λ
p
j ≤ Mp

1

(
1 − v

p
j

)
+ Mp

1 ψ
p
j , j = 1, . . . , Ip (15e)

0 = (
ep

k

)T
xp − δ p, γ

p
k free, k = 1, . . . , Ep (15f)

up ∈ {0, 1}np (15g)

v p ∈ {0, 1}Ip (15h)

− Mp
1

(
1 − w

p
ri

) ≤ xp
r − i − ε

p
ri ≤ Mp

1

(
1 − w

p
ri

)
, (15i)

i = 0, 1, . . . , N, r ∈ {
1, . . . , np

} \Sp (15j)

ε
p
ri = (

ε
p
ri

)+ − (
ε

p
ri

)− (15k)

N∑

i=0

w
p
ri = 1 (15l)

w
p
ri ∈ {0, 1} , i = 0, 1, . . . , N, r ∈ {

1, . . . , np
} \Sp (15m)

σ p, ψ p ≥ 0 (15n)
(
ε

p
ri

)+
,
(
ε

p
ri

)− ≥ 0, ∀r, i (15o)

In the above formulation (15), the ε
p
ri are used to target the specified

integer values and σ p, ψ p are used to relax complementarity, both of which
are minimized in the objective function weighting the two objective function
parts with positive weights ω1 and ω2. Thus, minimizing these deviations helps
find the optimal integer solution, as described in Gabriel et al. (2012).

3 Numerical examples

This section presents the results of numerical examples for solving discretely-
constrained Nash–Cournot games from the theory outlined in Section 2.
The first example constrains the production quantities to be integer
while the second example has continuous production quantities but binary
startup/shutdown variables. In both examples, seven variations are considered.
These variations go through different relaxation techniques and combinations
of formulations to be described later. The problems selected can be shown to
have unique solutions by simple algebra.

The results show that formulation (15) provides solutions to the original
discretely-constrained problems. The variations also show that, as stated be-



Solving Discretely-Constrained Nash–Cournot Games...

fore, Eq. (14) can lead to an infeasible solution. Moreover, relaxing comple-
mentarity in Eq. (14) but keeping integer restrictions also leads to a discrete
feasible solution. Both numerical examples show that relaxing complementar-
ity is essential to obtaining discrete solutions. Enforcing discrete restrictions,
even by integer relaxation, does not help obtain the integer solutions and
relaxation of complementary conditions is necessary. A combination of both,
as presented in Eq. (15) helps obtain the required solutions in both cases.
A relaxation of integrality has a somewhat easy interpretation and in fact
is commonly used in equilibrium problems with discrete restrictions. The
relaxation in complementarity is a bit more novel. One interpretation is that
the resulting equilibrium values (e.g., quantities, prices) are those values that
are the minimum distance to the solution set of the relaxed problem for which
integrality is maintained. From that perspective, these equilibrium values can
be construed as a projection of the relaxed solution on to the discretely-
constrained feasible region.

3.1 Problem definition

For ease of presentation and comparison but with no loss of generality,
consider a Nash–Cournot game with two players (p = 1, 2). Given an inverse
demand curve Price = a − b(Quantity), each player chooses qp ∈ Z+ to maxi-
mize their profit function

Prof itp = Price × qp − (βpq2
p + ρpqp) (16)

where the term in parentheses denotes cost as a function of quantity selected
i.e., qp. The formulation of the game is the same as discussed above.

For the first example, let, a = 6, b = 1, β1 = β2 = 1, and ρ1 = ρ2 = 1, as
well as adding capacity constraints for both players of the form

qp ≤ qmax (17)

where qmax = 4. Since only integer-valued production qp is allowed, a bimatrix
payoff table (assuming maximizing payoff) as shown below in Table 1 is
employed to solve Eq. (5).

Table 1 Bimatrix Nash–Cournot game, profits (q1/q2)

0 1 2 3 4

0 (0, 0) (0, 3) (0, 2) (0,−3) (0,−12)

1 (3, 0) (2, 2) (1, 0) (0,−6) (−1,−16)

2 (2, 0) (0, 1) (−2,−2) (−4,−9) (−6,−20)

3 (−3, 0) (−6, 0) (−9,−4) (−12,−12) (−15,−24)

4 (−12, 0) (−16,−1) (−20,−6) (−24,−15) (−28,−28)
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Table 2 Bimatrix
Nash–Cournot game, profits
(q1/q2)

(only adjustments: a = 9, ρ2 = 3)
0 1 2 3 4

0 (0, 0) (0, 4) (0, 4) (0, 0) (0,−8)

1 (6, 0) (5, 3) (4, 2) (3,−3) (2,−12)

2 (8, 0) (6, 2) (4, 0) (2,−6) (0,−16)

3 (6, 0) (3, 1) (0,−2) (−3,−9) (−6,−20)

4 (0, 0) (−4, 0) (−8,−4) (−12,−12) (−16,−24)

Clearly, q1 = 1, q2 = 1 is the unique Nash equilibrium in pure strategies.
Another way to solve Nash–Cournot games is by simultaneously solving the
problems

max
qp

[
a − b (q1 + q2)

]
qp −

(
βpq2

p + ρpqp

)

s.t. qp ≤ qmax (λp dual)

qp ≥ 0

for p = 1, 2. Since the slope of the inverse demand function b > 0 and
βp > 0, the KKT conditions are both necessary and sufficient for solving these
problems. These conditions are to find q1, q2, λ1, λ2 that solve the following
LCP:

0 ≤ 2qp(b + βp) + bq−p − (a − ρp) + λp ⊥ qp ≥ 0 (18a)

0 ≤ qmax − qp ⊥ λp ≥ 0 (18b)

for each p = 1, 2. However, the KKT conditions are only valid if qp, p =
1, 2 are continuous-valued. Thus, the resulting LCP needs to avoid discrete
restrictions on the qp variables. In this particular example, solving the above
LCP after assuming qp ∈ R+ results in the integer solution q1 = 1, q2 = 1 with
Price = 4.

However, changing some of the data to a = 9 and ρ2 = 3 results in a
non-integer solution of q1 = 1.733, q2 = 1.067, and Price = 6.2. But the new
bimatrix payoff table for the original discrete version of this game with these
new data (Table 2), shown below gives a unique discrete solution of q1 = 2,
q2 = 1 with Price = 6.

This example shows what can happen if the relaxed LCP does not provide
integer-valued answers. In the next section, more numerical tests are described
with the new data a = 9, b = 1, β1 = β2 = 1,ρ1 = 1, and ρ2 = 3.

3.2 Relaxing integrality and complementarity

In this section, several variations on relaxing complementarity and/or integral-
ity are numerically explored.

The first variation is to solve the continuous version of the LCP (i.e., without
any integer restrictions) relating to Eq. (5) (“MLCP”) . Solving the original
version of the problem with the integer restrictions relating to Eq. 5 is variation
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Table 3 Description of
formulation variations

Variation σ−compl. ε−integr. Problem desc.

1 No No MLCP
2 No No Bimatrix
3 No No Integer variables
4 Yes No Integer variables
5 Yes No Cont. variables
6 No Yes Cont. variables
7 Yes Yes Cont. variables

2 (“Bimatrix”) and is solved by examining the bimatrix payoff table. In the
remaining variations to be described, there are two ways of forcing integrality
of the solutions. First, the problem can be integer-constrained by indicating
to the solver that the variables can only take on integer values (variations 3
and 4) with variation 4 also relaxing complementarity and variation 3 enforcing
exact complementarity. Second, in variation 5, complementarity can be relaxed
without constraining the problem to have integer solutions, hence “continuous
variables” for the problem description. Hence, we should not expect integer
solutions. Finally, in variations 6 and 7, integers can be targeted using the ε

deviational variables (15 ). In variation 6, no relaxation for complementarity
is allowed. Variation 7 allows relaxation for both complementarity and
integrality. Table 3 describes the various possible formulations considered.
Note that Variation 5 is equivalent to setting ω1 = 0, ω2 = 1 and Variation 6 is
equivalent to setting ω1 = 1, ω2 = 0. For Variation 7, we set ω1 = 0.5, ω2 = 0.5.

Other combinations of values of ω1, ω2 were tested but not shown here as they
provided the same solution as either Variations 5, 6 or 7 for all numerical
examples. One can think of this as a tradeoff between complementary and in-
tegrality, commonly used in multiobjective optimization. Note that the values
of M1, and M2 were set equal to 1000, which is a larger value than required by
the discussion in the previous subsection.

Tables 4 and 5 summarize the results.
Table 4 shows that a solution to the integer-constrained Nash game is to

have q1 = 2, q2 = 1 with a resulting price of 6 (variation 2). When the integer
restrictions are removed, the solution is then q1 = 1.733, q2 = 1.067 with the
new price of 6.2 (variation 1). Solving the MIP version of the problem but
forcing exact complementarity and integrality results in an infeasible solution
(variation 3) as would be expected. Interestingly, the original integer solution

Table 4 Summary of results (a = 9, b = 1, β1 = β2 = 1,ρ1 = 1, ρ2 = 3)
Var. Solution (q1, q2) Price Profits (P1, P2)

1 (1.733, 1.067) 6.2 (6.01, 2.28)

2 (2, 1) 6 (6, 2)

3 Infeasible Infeasible Infeasible
4 (2, 1) 6 (6, 2)

5 (1.733, 1.067) 6.2 (6.01, 2.28)

6 (1.733, 1.067) 6.2 (6.01, 2.28)

7 (2, 1) 6 (6, 2)
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Table 5 Summary of results (a = 9, b = 1, β1 = β2 = 1,ρ1 = 1, ρ2 = 3)
Variation Sum ε Sum σ

1 N/A N/A
2 N/A N/A
3 N/A N/A
4 N/A 0.002
5 N/A 0
6 0.334 N/A
7 0 0.002

to the Nash problem can be obtained with the MIP approach as long as
complementarity is relaxed (variation 4) or when integers are targeted using
ε’s (without enforcing integrality) along with the complementarity relaxation
(variation 7). It is interesting to note that variation 7 is numerical validation
to obtain integer solutions to the DC-Nash game. From the perspective
of accuracy in attaining the original production values and price, the MIP
approach is correct in this instance and thus provides an alternative, viable
method for solving such problems. It is interesting to note the difference in
results between variations 4 and 5. The former achieves the correct integer
solution but directly forces the variables in GAMS to be integer-valued. The
latter allows relaxation of complementarity but does not give integer solutions
as expected. Furthermore, variation 6 also does not get the correct integer
solution even though the using the ε deviational variables were included.

3.3 Example relevant to production systems

In many applications, the quantities qp are actually positive real numbers but
there are also constraints of the form

spqmin ≤ qp ≤ spqmax (19)

where sp is a binary variable that is 1 when the player p chooses to produce and
0 when player p chooses to not produce. Here the binary variable sp might for
example relate to the on/off status for a power generation unit. If on, then the
minimum and maximum production quantities are in force. If off, then both
the upper and lower bounds are equal to zero. The original capacity constraint
is replaced by the one above and the resulting Nash–Cournot game is then
solved with a = 9, b = 1, β1 = β2 = 1, ρ1 = 1, ρ2 = 3, qmin = 1.5, and qmax =
4. The binary variables sp are the ones targeted when complementarity and
integrality are relaxed but still allowing for continuous generation variables.
The following tables summarize the results (Tables 6 and 7), with q1, q2 always
continous variables.

The solutions to this example are very different from the previous one.
Variation 2 shows the true solution when the variables sp, p = 1, 2 are

forced to be binary. Namely, player 2 produces at the minimum level of 1.5
but player 1 chooses a value of 1.625, in between the minimum and maximum.
The continuous relaxation (variation 1) achieves higher profits for both players
as would be expected due to less restrictive constraints but does not end up
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Table 6 Summary of results Example relevant to production systems
Var. Solution (q1, q2) Binary(s1, s2) Profits (P1, P2)

1 (1.733, 1.067) (0.347, 0.213) (6.01, 2.28)

2 (1.625, 1.5) (1, 1) (5.28, 2.06)

3 (1.625, 1.5) (1, 1) (5.28, 2.06)

4 (1.625, 1.5) (1, 1) (5.28, 2.06)

5 (1.733, 1.067) (0.347, 0.711) (6.01, 2.28)

6 (1.625, 1.5) (1, 1) (5.28, 2.06)

7 (1.625, 1.5) (1, 1) (5.28, 2.06)

with binary values for the sp variables. Interestingly, all other variations on
relaxation are able to achieve the correct production quantities (qp) and binary
production indicators (sp) except for variation 5 when only complementarity
is relaxed. For this particular problem, forcing integrality is key through the
solver in variations 3 and 4 or by minimizing ε as in variations 6 and 7, as all
give the correct binary solution for sp, p = 1, 2 .

3.4 Example of a power network

As a third example, consider a power market with two producers supplying
to one demand node as shown in Fig. 1. Producers 1 and 2 choose to produce
quantitites q1 and q2 respectively, and supply it to meet inelastic demand d,
while there are transmission lines (with flow variables q12, q13, q23) between
the three nodes. There is a marginal utility of demand cd and marginal costs
c1 and c2 for producers 1 and 2, respectively. There is also a market operator
who maximizes its own profits by buying from the producers and selling to the
consumers.

The producer p (p = 1, 2) solves the following optimization problem

min
qp

{
cpqp − λnqp

}
(20)

0 ≤ qp ≤ qmax
p (βmax

p ) (21)

where λn is the (endogenous) price at node n. Note that the producer p is active
at node n = p.

The market operator solves the following optimization problem (with qp

introduced to have a square system). The equality constraints set the power

Table 7 Summary of results Var. Price Sum ε Sum σ

1 6.2 N/A N/A
2 5.875 N/A N/A
3 5.875 N/A N/A
4 5.875 N/A 0
5 6.2 N/A 0
6 5.875 0 N/A
7 5.875 0 0
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Fig. 1 Power network with
two producers

q12 

q13 q23 

d

q1 q2

Producer 1 
Node 1

Producer 2 
Node 2 

Demand 
Node 3 

flow (q13 for example, signifies flow from node 1 to node 3) equal to the power
produced and the inequality constraints give a bound on the maximum amount
of flow allowed. Flow can be towards the opposite direction as well which is
signified by a negative number (i.e., if q13 is negative, then the flow is from
node 3 to node 1), so the inequalities contain a maximum negative flow as well.
Note that for simplicity, the conditions that relate power flows to voltages are
not included.

min
q1,q2,d,q13,q23,q12

{c1q1 + c2q2 − cdd} (22)

q13 + q12 − q1 = 0 (λ1) (23)

q23 − q12 − q2 = 0 (λ2) (24)

d − q13 − q23 = 0 (λ3) (25)

− qmax
12 ≤ q12 ≤ qmax

12 (βmin
12 , βmax

12 ) (26)

− qmax
13 ≤ q13 ≤ qmax

13 (βmin
13 , βmax

13 ) (27)

− qmax
23 ≤ q23 ≤ qmax

23 (βmin
23 , βmax

23 ) (28)

Table 8 Parameter values used in example

qmax
1 qmax

2 qmax
12 qmax

13 qmax
23 c1 c2 cd

18 20.5 12 15 15 2 1 5
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Table 9 Description of
formulation variations

Variation σ−compl. ε−integr. Problem Desc.

1 No No MLCP
3 No No Integer variables
4 Yes No Integer variables
5 Yes No Cont. variables
6 No Yes Cont. variables
7 Yes Yes Cont. variables

Additional balancing constraints, which are included this problem are
below.

q1 = q1 (29)

q2 = q2 (30)

The above optimization problems can be combined to form an MCP, which
gives a solution to the game. Our goal here is to see if we restricted the
quantities produced and flows to be integer-valued, if we can come up with an
equilibrium solution. The following Table 8 gives the values of the parameters
used for solving this network problem.

Hence, producer 2 has a lower marginal cost so will attempt to supply more
units of q2. We use the same process as before and formulate the problem
according the variations in Table 9. Note that we are not considering the
bimatrix game for this example, so there is no variation 2. The full formulation
of variation 7 is similar to the formulation of the previous Section 3.3, variation
7 model, found in the Appendix. The value of M = max{M1, M2} chosen here
was 100. Sensitivity tests were performed to check this value, and it was seen
that any value over M = 31 worked well. Table 10 shows the results for the
example under different variations.

Note that again, variation 7 gives an integer solution. Comparison to vari-
ation 4 is critical, as both of them give the same solution. However, variation
7 provides integer solutions but does not explicitly enforce integrality, while

Table 10 Solution to power market example

Variations 1 3 4 5 6 7

q1 9.5 Infeasible 10 9.5 9.5 10
q2 20.5 Infeasible 20 20.5 20.5 20
q12 −5.5 Infeasible −5 −5.5 −5.5 −5
q13 15 Infeasible 15 15 15 15
q23 15 Infeasible 15 15 15 15
λ1 2 Infeasible 2 2 2 2
λ2 2 Infeasible 2 2 2 2
λ3 5 Infeasible 5 5 5 5
d 30 Infeasible 30 30 30 30
Sum ε N/A N/A N/A N/A 1 0
Sum σ N/A N/A 0.5 0 N/A 0.5
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variation 4 requires imposing integer restrictions to get to the answer. Varia-
tion 3 proves to be infeasible, while variations 5 and 6 show that only including
σ -complementarity or only including ε-integrality is not sufficient to achieve
an integer solution for all the variables that are constrained as such. Note that
prices at each node (λ1, λ2, λ3) stay the same at each node, regardless of the
variation. However, variation 3 did not provide any solution, so not only does
variation 7 provide an integer solution, it does so without imposing integer
restrictions and also delivering reasonable prices.

4 Conclusions

This paper proposes a methodology to solve discretely-constrained Nash
games formulated as mixed complementarity problems. This has so far been
a mathematical exploration into the idea of relaxing complementary to solve
discretely-constrained Nash games. While economic interpretation is beyond
the scope of this paper, it is part of ongoing research. As pointed out by an
anonymous referee, the deviations from complementary can be interpreted as
an economic measure. The discrete restrictions can lead to infeasible solutions,
so a relaxation is needed. However, we have shown that relaxing only integer
restrictions does not necessarily yield an integer solution. This paper provides
a complementarity relaxation as well. From the theoretical analysis carried out
and the examples considered, the following conclusions can be drawn:

1. Relaxing both integrality and complementarity enables the selection of an
integer, equilibrium solution.

2. The relaxed problem formulated in Eq. (15) allows analyzing the tradeoff
between complementarity and integrality. This is done by actually comput-
ing the cost of integrality in terms of complementarity and, conversely, the
cost of complementarity in terms of integrality.

3. Three examples are used to illustrate the technique proposed and its
practical relevance to power markets.

Appendix

A.1 Variation 7 formulation

Variation 7 for the example in Section 3.3 where both complementarity and
integrality are relaxed is shown below, where all variables unless specified
otherwise are taken to be nonnegative.

min

⎧
⎨

⎩

∑

p

∑

i

(εpi)
+ + (εpi)

− +
∑

p

∑

j

(σ jp + τ jp)

⎫
⎬

⎭
(A1)

0 ≤ 2q1(b + β1) + bq2 − (a − ρ1) + λ1 − η1 ≤ M11u11 + M11σ11
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0 ≤ 2q2(b + β2) + bq1 − (a − ρ2) + λ2 − η2 ≤ M12u12 + M12σ12

0 ≤ −λ1qmax + η1qmin + γ1 ≤ M31u31 + M31σ31

0 ≤ −λ2qmax + η2qmin + γ2 ≤ M32u32 + M32σ32

0 ≤ q1 ≤ M11(1 − u11) + M11σ11

0 ≤ q2 ≤ M12(1 − u12) + M12σ12

0 ≤ c1 ≤ M31(1 − u31) + M31σ31

0 ≤ c2 ≤ M32(1 − u32) + M32σ32

0 ≤ −q1 + c1qmax ≤ M21v21 + M21τ21

0 ≤ −q2 + c2qmax ≤ M22v22 + M22τ22

0 ≤ q1 − c1qmin ≤ M41v41 + M41τ41

0 ≤ q2 − c2qmin ≤ M42v42 + M42τ42

0 ≤ −c1 + 1 ≤ M61v61 + M61τ61

0 ≤ −c2 + 1 ≤ M62v62 + M62τ62

0 ≤ λ1 ≤ M21(1 − v21) + M21τ21

0 ≤ λ2 ≤ M22(1 − v22) + M22τ22

0 ≤ η1 ≤ M41(1 − v41) + M41τ41

0 ≤ η2 ≤ M42(1 − v42) + M42τ42

0 ≤ γ1 ≤ M61(1 − v61) + M61τ61

0 ≤ γ2 ≤ M62(1 − v62) + M62τ62

u jp ∈ {0, 1} , v jp ∈ {0, 1} p = 1, 2

− M(1 − wpi) ≤ cp − i − εpi ≤ M(1 − wpi),

εpi = (εpi)
+ − (εpi)

−
∑

i

wpi = 1, p = 1, 2; wpi ∈ {0, 1} i = 0, 1
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